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a b s t r a c t

Background: The area of brain–computer interfaces (BCIs) represents one of the more interesting fields in
neurophysiological research, since it investigates the development of the machines that perform differ-
ent transformations of the brain’s “thoughts” to certain pre-defined actions. Experimental studies have
reported some successful implementations of BCIs; however, much of the field still remains unexplored.
According to some recent reports the phase coding of informational content is an important mechanism
in the brain’s function and cognition, and has the potential to explain various mechanisms of the brain’s
data transfer, but it has yet to be scrutinized in the context of brain–computer interface. Therefore, if the
mechanism of phase coding is plausible, one should be able to extract the phase-coded content, carried by
brain signals, using appropriate signal-processing methods. In our previous studies we have shown that
by using a phase-demodulation-based signal-processing approach it is possible to decode some relevant
information on the current motor action in the brain from electroencephalographic (EEG) data.
Objective: In this paper the authors would like to present a continuation of their previous work on the
brain-information-decoding analysis of visuo-motor (VM) tasks. The present study shows that EEG data
measured during more complex, dynamic visuo-motor (dVM) tasks carries enough information about the
currently performed motor action to be successfully extracted by using the appropriate signal-processing
and identification methods. The aim of this paper is therefore to present a mathematical model, which by
means of the EEG measurements as its inputs predicts the course of the wrist movements as applied by
each subject during the task in simulated or real time (BCI analysis). However, several modifications to the
existing methodology are needed to achieve optimal decoding results and a real-time, data-processing
ability. The information extracted from the EEG could, therefore, be further used for the development of
a closed-loop, non-invasive, brain–computer interface.
Materials and methods: For the case of this study two types of measurements were performed, i.e., the
electroencephalographic (EEG) signals and the wrist movements were measured simultaneously, during
the subject’s performance of a dynamic visuo-motor task. Wrist-movement predictions were computed
by using the EEG data-processing methodology of double brain-rhythm filtering, double phase demod-
ulation and double principal component analyses (PCA), each with a separate set of parameters. For the
movement-prediction model a fuzzy inference system was used.
Results: The results have shown that the EEG signals measured during the dVM tasks carry enough infor-
mation about the subjects’ wrist movements for them to be successfully decoded using the presented
methodology. Reasonably high values of the correlation coefficients suggest that the validation of the
proposed approach is satisfactory. Moreover, since the causality of the rhythm filtering and the PCA
transformation has been achieved, we have shown that these methods can also be used in a real-time,
brain–computer interface. The study revealed that using non-causal, optimized methods yields better
prediction results in comparison with the causal, non-optimized methodology; however, taking into
account that the causality of these methods allows real-time processing, the minor decrease in prediction

quality is acceptable.
Conclusion: The study suggests that the methodology that was proposed in our previous studies is also
valid for identifying the EEG-coded content during dVM tasks, albeit with various modifications, which
allow better prediction results and real-time data processing. The results have shown that wrist move-
ments can be predicted in sim
methodology (simulated) are
should be suitable for use in th
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. Introduction

In this paper we investigate the fuzzy identification of the brain
ode during complex dynamic visuo-motor (dVM) tasks. The study
ad two main aims: first, to modify the methodology that was pre-
ented in our previous publication [1] and validate it using the data
rom more complex dVM tasks; second, to alter the newly proposed

ethods so they would be useful for processing the EEG data in a
eal-time, brain–computer interface (BCI) [2,3].

The methodology used in this study is based on a signal-
rocessing approach that relies on the latest findings in the field
f the brain’s informational coding and has already proved to be
uccessful in extracting the encoded information from EEG data
uring simple visuo-motor (VM) tasks [1] and working-memory
asks [4]. The newest insight into the informational coding in the
rain suggests the existence of various mechanisms, such as oscil-

atory activity [5,6], the binding of several neuronal areas [7–9] and
he phase coding of information [10,11]. The theory of oscillations
epresents one of the fundamental mechanisms of brain opera-
ion, since it is believed that every process in the brain is mediated
y means of the electric oscillations of the neuronal populations,
lso known as brain rhythms [12]. Some authors suggest that an
mportant role in motor control is played by the oscillations in the
3–30 Hz frequency range, which are usually referred to as the beta
hythms [13,14]. According to Pfurtscheller et al. [13], an external
vent, such as voluntary finger movement, causes a beta-rhythm
esynchronization in the neuronal populations. However, accord-

ng to the same authors and Andrew and Pfurtscheller [8] the beta
scillations re-synchronize over a larger scale when attention to
he sensorimotor integration (binding) is required. The synchro-
ization and desynchronization of the beta rhythms in different
otor areas could, therefore, be an indication of the importance

f synchronized oscillatory activity. Furthermore, when a certain
ction that requires the integration of several, not necessarily
natomically connected, neuronal areas is performed, synchro-
ized oscillatory activities in these areas can be observed [12]. As
uggested, this is a strong indication of parallel data processing
n the brain, also referred to as binding or large-scale integration
15–17]. Binding theory has been investigated in several studies
7,8,18] and also experimentally proved by Classen et al. [19] and
režan et al. [20], by means of a coherence analysis.

If we combine the mechanisms of brain oscillations and neu-
onal binding with the proposed mechanism of phase lags [21],
hich could represent a general information-coding scheme in the

rain [10], it may be possible that the content that is coded in the
scillations is likely to be transferred between the synchronized
egions of the cooperating neuronal populations as the phase char-
cteristics of the signals.

Therefore, to test whether the hypotheses of oscillations, the
inding and the phase coding of the information are valid for
xtracting the motor-task information, the signal-processing meth-
ds used in this work are based on filtering the representative brain
hythms, a phase-demodulation approach and a PCA transforma-
ion of the EEG signals.

Our previous study of VM tasks [1] represents the groundwork
n the field for our proposed, alternative, non-invasive BCIs for
ripping-force identification. The paper demonstrated that the EEG
ignals carry enough data about the current gripping-force action,
ncoded in the brain waves, which can be extracted using the
ppropriate signal-processing methods. Thus, the present study
nvestigates whether it is possible to develop a BCI using similar but
odified signal-processing methods and a fuzzy-prediction model
22,23] in Takagi–Sugeno form [24], when using the EEG data from
ynamic visuo-motor tasks. One of the major limitations of the pre-
iously proposed methodology was its non-causality, i.e., that it
ould not process the data in real time. Therefore, an appropriate
e in Medicine 51 (2011) 43–51

substitution needs to be found in order to use it in a real-time data
analysis.

The dVM tasks that were used in this study require the prepa-
ration of the so-called motoric program and elicit the cooperation
of the visual and motor areas in the human brain (i.e., visuo-motor
integration). Such tasks are based on the conclusions of our stud-
ies [1] and the concept of binding theory, suitable for extracting the
encoded data. Since the simple VM task uses sine-wave-shaped tar-
get signals; supposedly, the advantage of the complex dVM tasks
over the simple VM tasks should be the randomly generated, con-
tinuous target signal, which needs to be observed and followed by
shifting the joystick and is harder to track and anticipate. Thus,
it is reasonable to assume that the dVM task represents a more
compound task for the brain and very likely elicits more complex
processes in it. Moreover, since the dVM task introduces differ-
ent patterns of target signals in each repetition, its randomness
could prevent the learning process, which is normally started in the
brain when a certain action is repeated several times (the simple
VM task). Preventing the learning process could be an important
aspect when using such EEG data in BCIs, since it is very likely
that previously learned actions elicit different brain processes [25]
and could, therefore, influence the mathematical relations identi-
fied by the BCI. The more complex dVM task should also validate
whether the proposed methodology in simple VM tasks is only a
sine-wave-shape generator or an actual motor-action prediction
model.

As already mentioned, the aim of this study is to propose a
mathematical model, using simple brain-rhythm filters, a phase-
demodulation approach, principal component analyses (PCA) and
a fuzzy-prediction model, that should successfully predict the sub-
ject’s wrist movements using EEG data, measured during complex
dVM tasks, as inputs. Obtaining the appropriate methods and vali-
dating the fuzzy-prediction model, further effort has been put into
the modifications of the existing approach in such a way as to
achieve the possibility of its usage in the BCI, processing the EEG
data and computing the results in real time. By validating the pro-
posed model we have introduced a new, alternative approach in
the development of non-invasive BCIs.

2. Materials and methods

2.1. Subjects and EEG recording sessions

In this study we measured and used the data from four healthy,
right-handed subjects: all male (informed consent), aged 24, 27, 32
and 37 years. None of the participating subjects had any previous
experiences with the visuo-motor tasks nor had any of them ever
participated in an EEG-related study. The EEG recording sessions
took place in a dark, quiet and electromagnetically shielded room.
The subjects sat on a chair with elevated leg and hand rests to mini-
mize any muscle tension. The joystick was placed on a desk in front
of the subject. All four subjects performed the tasks with their right
hand. The tasks were displayed on a screen, 80 cm in front of the
subject, using Matlab 7 software. The amplitude of the target signal
subtended approximately 10◦ of the visual angle.

2.2. EEG and wrist-movement data

For the needs of this study, two types of measurements were
performed, i.e., the EEG signals and the wrist movements, which

were measured simultaneously. For the recording and the data
acquisition of the EEG signals a BrainAmp MR (Brain Products
GmbH, Germany) with a 32-channel amplifier (29 electrode sig-
nals, 1 ECG signal, 2 EOG signals) and a MR-compliant cap based
on the 10–20 electrode montage, a common average reference was



V. Logar, A. Belič / Artificial Intelligenc

Fig. 1. dVM task; the upper dot represents the desired, and the lower dot the actual,
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oystick shift. The goal of the task is to follow the dot, representing the desired wrist
hift as precisely as possible with the dot representing the actual wrist shift (joystick
ovement). The thick and the thin lines were not visually accessible to the subjects

uring the performance of the task.

sed. The EEG signals were band-pass filtered to remove frequen-
ies lower than 0.15 Hz and higher than 100 Hz. The EEG recordings
ere sampled with a 512-Hz sampling frequency. The electrode

mpedance was kept below 5 k�. The ECG and EOG signals were
ot used for further signal analysis. For the wrist-movement acqui-
ition we used a joystick connected to a PC via a USB port. The wrist
ovements were performed in the up/down (forth/back) joystick

irection. Both recordings were synchronized through the signal
hat was sent from the PC and recorded with the EEG recording
ystem. Matlab software was used for the wrist-movement acquisi-
ion and the numerical analysis of the signals. The wrist-movement
ignal was sampled with a sampling frequency of 50 Hz.

.3. Software tools

For the numerical analysis of the signals we used Matlab 7
ith its toolboxes for fuzzy logic, signal processing and statis-

ics. To extract the particular brain-rhythm intervals from the
aw EEG signal and to prevent a potential signal-drift when using
hase demodulation, 5th-order band-pass and 3rd-order high-pass
0.025 Hz) Butterworth filters were used. For the needs of the
on-optimized causal and optimized non-causal methodology the
ignals were filtered with Matlab’s ordinary filter and zero-phase
ltfilt filter functions, respectively. The first type of filter rotates
he signal’s phase, while the second type preserves the phase char-
cteristics of the signal. Preserving the phase lags of the signals
ould be an important aspect when investigating the phase code
f the measured signals; however, zero-phase filtering is only pos-
ible off-line when the complete signal is available, thus disabling
he real-time data processing. The EEG signals were phase demod-
lated using Matlab’s demod function, and the principal component
nalysis was pre-processed using Matlab’s prepca function.

.4. Experiments

The EEG signals and the wrist movements were measured simul-
aneously while the subjects performed the dynamic visuo-motor
ask. The dVM task required the subjects to observe two dots on the

creen. One dot’s vertical position was determined by the ampli-
ude of a randomly generated continuous signal and served as the
arget, which needed to be followed as precisely as possible by the
ther dot, the vertical position of which was determined by the
oystick shift (up or down), as shown in Fig. 1. The wrist shifts that
e in Medicine 51 (2011) 43–51 45

needed to be applied were less than 70% of the joystick’s maxi-
mum shift to prevent any possible hardware non-linearities, while
the maximum frequency of the target signal was 0.15 Hz. Each task
was divided into 10 blocks, of which the first part was active (fol-
lowing the target signal) and lasted 30 s and the second part was a
pause (no motor action) of 30 s.

The grey and the black lines that are shown in Fig. 1 were not
shown to the subject during the experiment in order to prevent any
prediction of the forthcoming movement. Only the two dots in the
middle, which indicated the desired and the actual wrist (joystick)
shift, were displayed to the subject during the performance of each
task.

In a previous visuo-motor (VM) study [1], we used sine-wave-
shaped signals for the experiments. In other words, the target
signal, which had to be followed by the subjects, had a sinusoidal
shape for all the task repetitions. In contrast to that study, here
we employ a dynamic VM task that randomly generates continu-
ous signals for each trial, which are non-deterministic, harder to
predict, could prevent the learning process and represent a more
complex task for the brain.

2.5. Signal processing

The signal processing used is based on the results of our pre-
vious study [1]. As we have shown, it is possible to extract the
relevant information from the EEG signals using appropriate meth-
ods of signal processing and a fuzzy model. Therefore, the present
study employs similar procedures for the preparation of the data,
i.e., brain-rhythm filtering, phase demodulation and principal com-
ponent analyses (PCA). The presented methods were valid for the
processing of the simple VM task’s EEG signals and support the
importance of the brain rhythms in motor tasks [13,14] and the
proposed theory of phase coding [10].

The present study revealed that using a similar methodology
to the one proposed in [1] it is possible to extract some relevant
information about the dVM task’s wrist movements from the EEG
signals. However, further signal analysis has shown that it is pos-
sible to achieve better prediction results (an approx. 30%-lower
SSE criterion value) when using the modified version of the data
processing, using two data sets of EEG data, each processed with
signal-processing methods using different parameters. There are
many potential reasons for this, which are addressed in the Dis-
cussion. Briefly, it is reasonable to assume that better results are to
be expected when the input signals carry more potential informa-
tion. However, the study also revealed that using more than two
duplicated EEG data sets as inputs to the model does not signifi-
cantly improve the prediction quality, while it drastically increases
the processing and training times. Therefore, the authors decided
to obtain the optimum quality-to-performance ratio and use two
sets of EEG data for further processing.

Thus, the signal-processing procedure was applied as follows.
First, the raw EEG data from all 29 electrodes was duplicated to
produce two identical sets of data. Then, each data set was sliced
into intervals of interest, i.e., 30-s activity periods, and band-pass
filtered, each with its own frequency interval to obtain different
areas of the beta (13–30 Hz) rhythms. Afterwards, each set was
phase demodulated with a different carrier-wave frequency using
Matlab’s demod function (Hilbert transform). Finally, the PCA trans-
formation was applied to both sets. Since it is known that EEG
signals are mutually highly correlated, the purpose of using the
PCA was to reduce the data’s dimensionality and to achieve a linear

independency of the signals, which drastically improves the model
training and validation. The study revealed that by applying a PCA
procedure it is possible to describe 95% of the signals’ variance using
five principal component scores, which is an indication of highly
correlated EEG data. Therefore, two data sets, each composed of
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ig. 2. Schematic representation of the proposed data processing. EEG signal (inpu
our main steps: (1) beta-rhythm filtering, (2) phase demodulation, (3) principal c
output data).

he first five PCA scores, were used for the further analysis, thus
roducing 10 different inputs to the prediction model. A simplified
cheme of the data processing is shown in Fig. 2.

.6. Processing parameters

The filtering intervals (ffilt1, ffilt2) and the carrier-wave frequen-
ies (fDM1, fDM2) for the phase demodulation discussed in Section
.5 were determined in two different ways: the first was to achieve
he optimum prediction results, regardless of the causality of the

ethods used and the time needed to process the data; and the
econd was to satisfy the needs of real-time processing, i.e., using
he causal methods of data processing and paying attention to the
ime used to process the data and train the prediction model.

In the first experiment we obtained the parameters by means of
he simplex optimization procedure using the sum-squared error
SSE) criterion, which can be described by the equation:

SE =
k∑

i=1

(y(k) − ŷ(k))2, (1)

here y(k) represents the measured and ŷ(k) the predicted signal.
The methods that were used consisted of zero-phase filters,

hase demodulation and a PCA transformation for each data
eriod separately (optimal PCA transformation). The procedure was
tarted with the initial values of the parameters set to (12, 16) Hz
nd (18, 22) Hz for the band-pass filters and to 14 Hz and 20 Hz
or the phase-demodulation carrier-wave frequencies. The filter-
nterval frequencies were determined as dependent variables with
egard to the carrier-wave frequency, i.e., the interval included fre-
uencies in the ±2 Hz range from the carrier frequency, and were
ot a direct subject of the experimentation. The ±2 Hz frequency
ange was determined experimentally by testing various intervals
f the filter frequencies by means of the before-mentioned opti-
ization procedure, to achieve the best possible prediction results.
The reason for using the carrier-wave optimization was twofold.

irst, it is difficult to determine the parameters in a uniform way for
ll subjects and all data periods. Second, obtaining the parameters
f such a highly complex system by trial or experiment does not
ield optimum results.

The optimization structure was designed as follows. In the ini-
ial step, the initial parameter values were used to process the EEG
ata, which was used for training and validating the fuzzy model
nd computing the prediction quality through the SSE criterion. In
ach succeeding step of the optimization, the procedure altered the

arameters according to the simplex algorithm, processed the data
ith new parameters and re-trained and re-validated the fuzzy
odel, using that data, until the minimum value of the SSE crite-

ion value and thus the optimum wrist-movement prediction was
eached. The training, validation (prediction of the wrist move-
) processing is performed in parallel twice with different processing parameters in
ent analysis and (4) fuzzy model training and prediction of the wrist movements

ments) and calculation of the SSE were made for two successive
periods of the EEG data (for example: period 1 – training, period
2 – validation, etc.). At the end of the optimization, the procedure
returned the optimum parameters that, when using the before-
mentioned methods of signal processing, gave the lowest SSE value
when predicting the wrist movements.

In the second experiment, in order to use the methodology in
real-time, the optimization procedure cannot be considered, since
it needs the EEG data to be processed in advance and is also very
time consuming. Therefore, we acquired the values of the param-
eters experimentally, using a few initial periods of the EEG signal,
observing the given results and their quality by means of the SSE
criterion and extrapolating the obtained values further to the whole
EEG signal. The methods that were used consisted of classic filters,
phase demodulation and a PCA transformation, whose transforma-
tion matrix was obtained in the rest period and then applied to the
EEG signals in the activity period.

After acquiring the optimum parameters (experimentally or by
optimization), they were used to process the EEG data, which was
then used for the final validation of the prediction model (simulated
or real-time results).

2.7. BCI

Since the paper investigates whether the presented methodol-
ogy for signal processing can be used in a brain–computer interface
in real time, the following section explains the required modifica-
tions to the existing approach and the structure of the proposed
BCI.

The methodology that was used in the previous studies as well
as for the optimization procedure in this study is non-causal, mean-
ing that its use in a real-time data analysis is not possible. The
non-causal methods are the zero-phase filters and the PCA transfor-
mation. The first are classified as non-causal because the filtering is
done in both directions of the signal simultaneously to preserve its
phase, while the PCA procedure is non-causal because it is done by
means of a singular value decomposition, which also transforms the
signals all at once and not sample-by-sample. Thus, both of these
methods need the complete EEG data set at once in order to process
it properly.

Therefore, to use these methods in a real-time analysis, they
need to be modified in such a way as to ensure their causality.
This was done by replacing the zero-phase Butterworth filters with
ordinary Butterworth filters and using the same PCA transforma-
tion matrix for training and validating the fuzzy model. The EEG

data from the previous activity period was used to obtain the
transformation matrix, which was then applied to the EEG data
in the succeeding activity period. Since the phase-demodulation
method itself is already causal, its structure remained the
same.
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Fig. 3. Block diagram of the proposed BCI. Measured EEG data processing is done during the resting and activity periods. Thirty-second resting periods are designated to
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btain the transformation matrix and to train a fuzzy model from the measured EEG
rocessing the EEG and wrist-movement data that was measured in the previous ac
rained fuzzy model and the calculated PCA transformation matrix are then used in t
f the wrist movements. In the initial step of the procedure the system needs to be

The algorithm for real-time, online data processing can be rep-
esented as a block diagram in Fig. 3.

.8. Fuzzy model

In the study presented here, like in [1], a fuzzy model in the
akagi–Sugeno (TS) form was used. This model approximates a
onlinear system by smoothly interpolating affine local models
24]. Each local model contributes to the global model in a fuzzy
ubset of the space characterised by a membership function.

The initial fuzzy-inference system (FIS) was generated using
he fuzzy-subtractive-clustering method. Given separate sets of
nput and output data, this method generates an initial FIS for the

odel training by applying a fuzzy subtractive clustering of the
ata. This is accomplished by extracting a set of rules that models
he data’s behaviour. The rule-extraction method first determines
he number of rules and antecedent membership functions and

hen uses a linear least-squares estimation to determine each rule’s
onsequent equations. A combination of the least-squares and the
ackpropagation-gradient-descent methods was used to train the

nitial FIS membership-function parameters to model a given set of
nput/output data.

ig. 4. Wrist-movement validation for subject 1 during a dVM task. Upper panel figures rep
ptimization, while the lower panel figures represent the fuzzy model prediction using r
ovement. Mean SSE (optimization) = 28.0. Mean SSE (real-time) = 49.1. Mean correlation
nd wrist movements. In this manner, the resting periods represent the main step for
period, computing a PCA transformation matrix and training the fuzzy model. The

lowing activity period, with newly measured EEG data for the prediction/validation
d using an initial EEG activity data.

The inputs to the fuzzy model were the processed EEG signals,
while the output of the model was a prediction of the subjects’ wrist
movements, as shown in Fig. 2.

3. Results

The following section presents the results acquired from the EEG
data, processed with methods using parameter optimization and
experimentally obtained parameters for a real-time analysis.

In all the figures shown below the thin line represents the mea-
sured wrist movements as applied by the subjects in a time period
of 30 s, while the thick line is the predicted wrist movement of the
fuzzy model. For an estimation of the prediction quality the correla-
tion coefficient (corr) and the before-mentioned sum-square error
between the measured and the predicted wrist-movement signals
are used.

Figs. 4–7 show the prediction results given by the fuzzy model,

using the processed EEG data for all four subjects.

The upper panel of the figures shows the results when the EEG
was processed using methods with parameter optimization, while
the lower panel of the figures shows the results when using meth-
ods with experimentally obtained parameters for real-time BCI

resent the fuzzy model prediction using processed EEG data with method-parameter
eal-time processed EEG data. Thick line: predicted movement; thin line: measured

coefficient (optimization) = 0.75. Mean correlation coefficient (real-time) = 0.67.
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ig. 5. Wrist-movement validation for subject 2 during a dVM task. Upper panel figur
ptimization, while the lower panel figures represent the fuzzy model prediction u
ovement. Mean SSE (optimization) = 33.2. Mean SSE (real-time) = 57.4. Mean corr

nalyses. All the validation results were obtained with EEG data
rom the periods following the training and were not a part of the
raining data set.
Comparing the measured and the predicted wrist movements
n Figs. 4–7 and the values of the SSE and correlation coefficients it
an be seen that the fuzzy-prediction model successfully predicts
he wrist movements from the EEG signals for each trial and each
ubject, regardless of how the parameters were obtained. Values of

ig. 6. Wrist-movement validation for subject 3 during a dVM task. Upper panel figures rep
ptimization, while the lower panel figures represent the fuzzy model prediction using r
ovement. Mean SSE (optimization) = 30.9. Mean SSE (real-time) = 43.2. Mean correlation
resent the fuzzy model prediction using processed EEG data with method-parameter
eal-time processed EEG data. Thick line: predicted movement; thin line: measured

coefficient (optimization) = 0.73. Mean correlation coefficient (real-time) = 0.66.

the correlation coefficient above 0.6–0.7 show a strong connection
between the measured and the predicted movements; therefore,
we can conclude that the prediction ability of the fuzzy model is

high. However, comparing the lower panel figures, representing
non-optimized real time, and the upper panel figures, represent-
ing optimized results, it is clear that the average prediction-quality
criterion SSE and correlation coefficients for the non-optimized
parameters are 45.7 and 0.73, respectively, and for the optimized

resent the fuzzy model prediction using processed EEG data with method-parameter
eal-time processed EEG data. Thick line: predicted movement; thin line: measured

coefficient (optimization) = 0.70. Mean correlation coefficient (real-time) = 0.58.
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ig. 7. Wrist-movement validation for subject 4 during a dVM task. Upper panel figur
ptimization, while the lower panel figures represent the fuzzy model prediction u
ovement. Mean SSE (optimization) = 28.1. Mean SSE (real-time) = 32.9. Mean corr

arameters they are 30.1 and 0.64. An average 33%-lower SSE value
nd 13%-higher correlation coefficient indicate a better prediction
uality due to the optimization of the signal-processing methods
nd the flaws related to achieving the causality of the real-time
nalysis methods. Such results were indeed expected, since it is
ractically impossible to determine an optimum combination of
he parameter values by simply trying. However, there is a possibil-
ty that the prediction results of the optimized and non-optimized
pproach are very close to each other with regard to the values
f the SSE and the correlation coefficients. Taking into account the
omplexity and the non-linearity of the presented system, it is quite
ikely that the optimization procedure converges and remains in
ne of the many local minimums. Regarding the presented results,
t is clear that both procedures give satisfactory wrist-movement
redictions, which should be very close to the global minimum.
onsidering the presented methodology, further improvements to
he predictions could only be relatively minor.

. Discussion

In this study we attempted to identify the subject’s brain code
uring complex, dynamic visuo-motor tasks. The results have
hown that it is possible to achieve reasonably good predictions
f a subject’s wrist movements when using appropriate methods
f signal processing, a fuzzy model and the EEG data as the inputs.
he signal-processing methods employed in this study consist of
simple brain-rhythm filtering, a phase-demodulation approach

nd a principal component analysis. All of these methods have
lready proved to be suitable for extracting the information car-
ied by the EEG signals from simple VM tasks [1] and also working
emory tasks [4]. The results shown in this study suggest that

imilar, yet rather modified, methods are also useful for extract-
ng the information from more complex dVM tasks. The proposed
ethodology could, therefore, also be used for the development of
brain–computer interface to decode the brain code in real-time.

The modifications to the existing methodology that are needed
n order to use it for satisfactory off-line information decoding
f the dVM tasks include an extension of the data processing to
resent the fuzzy model prediction using processed EEG data with method-parameter
eal-time processed EEG data. Thick line: predicted movement; thin line: measured

coefficient (optimization) = 0.78. Mean correlation coefficient (real-time) = 0.69.

satisfy the needs of a more complex decoding procedure. There-
fore, the EEG data has to be duplicated and the data processing
needs to be applied twice, with different processing parameters,
before training and validating the fuzzy classifier. However, con-
ditionally acceptable results can also be obtained with a single
EEG data set. When increasing the number of input data sets, a
minor improvement in prediction quality can be observed; how-
ever, the time that is needed to process this data and to train the
fuzzy model increases significantly. Therefore, the authors decided
to obtain the optimum quality-to-performance ratio and use two
sets of EEG data for further processing. There are many potential
reasons for better prediction results when using double signal pro-
cessing, compared to a single signal processing. The first feasible
reason could be the more complex cognitive task that had to be
performed. Since the target to be followed represents a randomly
generated continuous signal, whose frequency spectrum carries
a wide band of different frequencies and is, from this point of
view, more information-rich, its usage could elicit more complex
brain actions and/or processes. These processes could be harder
to decode or perhaps carry more compound information about the
motor action that may be encoded slightly differently to that during
VM tasks and, therefore, demands a more sophisticated methodol-
ogy to extract it. Another possible reason also arises from the target
signal used. Since it is generated randomly for each task trial it
could prevent the learning process in the brain, which is normally
started when a certain pattern of a task is repeated several times
(e.g., a simple VM task). It is known, for example, that the brain
executes movements in two different control schemes, i.e., closed
and open loop [25]. Closed-loop control is activated when a motion,
unknown to the brain, is performed. Thus, the brain continuously
adjusts the movement according to the sensory (visual, auditory,
etc.) feedback information, which also coincides with a dVM ran-
dom target signal. When a movement already known to the brain

is performed, a great portion of its execution is carried out by the
open-loop control, while only minor adjustments are made in the
closed loop. Therefore, since it is plausible that the learning process
has been started in subjects performing simple VM tasks, their exe-
cution of the task becomes increasingly controlled with open-loop
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ontrol, which is faster and simpler to perform than a closed loop.
hus, eventual differences in the brain’s simpler open-loop control
uring VM tasks and a more complex closed-loop control during
VM tasks could be the reasons for the improvements needed in
ignal processing. Another one of the probable reasons could also
rise from the brain-operation complexity and adaptability. Very
ikely, the information transferred between the active regions of
he brain is coded with an oscillation that is non-deterministic and
as variable frequency and phase. Therefore, multiple signal pro-
essing covers a wider range of possible information-carrying brain
aves than single processing and thus extracts more information

elevant to the motor action. The last possible cause could be that
he brain activity required to move a person’s wrist (a more com-
lex task), needs the activation of several motor programs, each
roducing its own code or information. In order to understand that
ode, more information processing has to be applied in comparison
o the information decoding of simpler tasks.

Furthermore, the BCI signal-processing approach requires mod-
fications to the existing methodology to achieve causality (a
eal-time processing ability). Therefore, non-causal methods, such
s zero-phase filters and the PCA transformation, needed to
e replaced with appropriate causal replacements, which were
ttained by using ordinary (non-zero phase) filters and the same
CA transformation matrix for the training and validation periods of
he EEG signal. The presented simplifications in the signal process-
ng also affected the prediction quality (approx. 30%-higher SSE and
3%-lower correlation coefficient values); however, for the pos-
ibility of using these methods in real-time, a few-percent-lower
rediction quality is acceptable. Obviously, using ordinary filters
nd a duplicated PCA transformation matrix does not affect the
ignal processing in such a way that it would significantly reduce
he model’s prediction quality.

As can be seen in some of the subfigures in Section 3, the fuzzy
odel prediction sometimes deviates from the measured wrist
ovements for some data points. This could be for a variety of

easons, such as muscle and/or eye-movement artefacts, a lack of
nput/output data mapping information or simply a flaw in the
resented approach that means it is not capable of successfully
ecoding all the needed information. Since the impact of muscle or
ye movement on the EEG measurements is high and the trained
odel has no useful information about the correlation of such

nput and output data, abrupt failures in terms of the prediction
esult are possible. Another possible reason arises from the train-
ng procedure for the fuzzy model. As the model is trained using
he input/output data, it is possible that limited information about
he relation between the wrist movements and the EEG spectrum
s available, for many possible reasons, e.g., incorrectly deter-

ined filtering intervals or carrier-wave frequencies. Therefore,
ue to the lack of the model’s input/output data-mapping infor-
ation, the prediction result can, in some cases, deviate from the
easured wrist-movement data. Nevertheless, considering such a

ighly non-linear and time-variant system as the brain, failures of
he prediction could simply be a flaw in the proposed system, which
n some situations is not adequate for the information decoding.
n addition, some reasons, so far unknown, for poorer movement
redictions are also possible.

The performed study and its findings are based on a small sam-
le of four research subjects. From this point of view a question
rises as to whether the presented results and the approach can
e extrapolated from a sample of this size. Considering the type
f the research, where small samples are the norm and the results

f previous studies [1,4] that employ a similar methodology, some
eneral conclusions on the suitability of the presented approach
nd the generalizability of the results can be made.

The presented results can be, to some extent, compared to other
imilar BCI studies performed by Wolpaw and McFarland [26],
e in Medicine 51 (2011) 43–51

Georgopoulos et al. [27] and Melinger et al. [28]. Like in this paper,
all of these studies investigate the target signal control by BCIs. The
paper presented by Wolpaw and McFarland [26] studies the con-
trol of a 2-dimensional movement signal by a BCI based on EEG
measurements. The idea of the BCI is based on the application of
an adaptive algorithm extracting the information carried by the
electrodes C3 and C4. According to their study, the information
about the desired target movement is encoded in the beta and mu
rhythms. In order to use such a system, gradual training of the sub-
jects is needed, since the training of the BCI is dependent on the
subject’s control of his or her EEG rhythms. Therefore, the system
and the subjects have to mutually adapt to each other to use the full
potential of the BCI. On the other hand, the BCI studies presented by
Georgopoulos et al. [27] and Mellinger et al. [28] study the possibil-
ity of using the MEG recordings for target movement control. In the
study presented by Georgopoulos et al. the subjects tried to follow
a pentagonal target signal by means of the joystick’s movement.
Different off-line signal processing methods were used to build a
mathematical model capable of estimating the circular movement
as applied by the subjects from the measured MEG data. The study
performed by Mellinger et al. also employs MEG measurements
as inputs to the proposed BCI, while the proposed methodology
mainly uses subject-controlled beta and mu rhythms to operate
the BCI. Comparing the results of these studies with the results
presented in this paper, some advantages and disadvantages of the
proposed approach can be observed. One of the main advantages
is the possibility to use relatively inexpensive and robust equip-
ment (EEG) in comparison to the highly complex and expensive
MEG instrument and its peripherals. The other advantage is that
the subjects performing the tasks do not need any previous train-
ing to learn how to control their brain rhythms, which can also be
an important aspect when dealing with such systems. The main
disadvantage of the proposed methodology so far is its limitation
to carry out 1-dimensional target control and the necessity of the
actual wrist movement’s presence, needed to train and validate the
system. A methodology, using EEG data from imaginary hand move-
ments in 2-dimensional space, similar to [28], shall be investigated
in our future work.

5. Conclusion

In this paper we investigated whether the presented methodol-
ogy of double brain-rhythm filtering, phase demodulation, PCA and
a fuzzy model, is valid for extracting the wrist-movement informa-
tion from EEG signals during complex, dynamic, visuo-motor tasks.
The study also investigates whether these methods are suitable for
use in a brain–computer interface. The obtained results suggest that
the information about the subjects’ wrist movements could be suc-
cessfully extracted with the proposed methods of signal processing.
However, a more complex methodology is needed, in comparison
with our previous studies on simple VM tasks, to obtain satisfactory
results, which most likely indicates the greater complexity of the
dynamic visuo-motor task. Nevertheless, we have shown that rel-
atively simple methods of signal processing can be used to extract
a subject’s brain code and use it to predict the course of the wrist
movements in simulated or real time.

Since the proposed methodology of the EEG signal analysis
shows promising results, further effort will be invested in the
development of a BCI capable of extracting the brain code from
the measured input/output data. The aim of such a BCI study will

be to predict the movements from imaginary motor actions in
two dimensions, when the target signal is observed but none of
the movements are actually performed. In that case, such a BCI
could be used to help people who experience severe motor-control
disturbances. Very likely, a modified version of the presented
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ethodological approach will be used for the development of such
BCI.
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grafska koherenca med vidnimi in motoričnimi predeli leve in desne poloble
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